Help 99

Help 99

Help 99

Connecting Help to Visual Basic Programs

by

Don Lammers

Presented by

Help University

Credits

I have gotten materials for this document from experimentation and from people who have walked this path before me. There follows, in no particular order, the people and documents from which I got the parts of this information that I didn't get the hard way. My thanks to all of them.

David Liske, Dana Cline, Microsoft Help WorkShop Help, Microsoft Knowledge Base, The Developer's Guide to WINHELP.EXE (Jim Mischel), Building Windows 95 Help (Nancy Hickman), Paul O'Rear, Developing Online Help for Windows 95 (Bogan, Farkas, and Welinske), Gordon F. MacLeod, Burt Abreu

This document is provided as a reference for hooking WinHelp into Visual Basic Programs, not as a summary of this session. HTML Help issues are covered better by David Liske's tutorial (see References at the end of this document).

The Official Way

Visual Basic provides easy access to Help through its properties and methods. In addition, you can call the WinHelp API from anywhere in your code. WinHelp has been used with VB for long enough that you can easily get your hands on the API and variable declarations without resorting to the pain of bringing them in using the API Text Viewer (see References). HTML Help is a little harder, but not by much. This document discusses the official basics, from which you should be able to easily customize.

Connecting Context Sensitive WinHelp to VB5 and VB6 the Official Way

This section shows the steps necessary to hook context sensitive Help into VB. The next section shows how to call Help directly from code.

Visual Basic provides directly for calling window level Help topics using the F1 key, or providing What's This? Help for each control, including activation from the F1 key. The choice between What's This? Help and Form level F1 Help can be made on a form by form basis.

1 Set the Help file for the app

Make sure that WinHelp can find the Help file. Since your program can be started from shortcuts created by the user, the installation program should register the Help file or you should call Help from your VB program using the full path and file name.

· To register the Help file, create a string value under:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Help

The name of the string value is the Help file name (without path) and the value is the path.

· Set the App.HelpFile property. The basic syntax is:

App.HelpFile = App.Path & "\helpfile.hlp>hWindow"

helpfile.hlp is the name of the Help file.

hWindow is the name of the secondary window in which to display the topics.

Tips:

· The App.HelpFile property can be changed at runtime, so you can reset it in code as needed to call additional Help files.

· If you have more than one Help file or window style to call from the app, you should put the code for changing Help files in a separate subroutine. This makes any changes during the project much easier to implement.

· You can let the Help author edit the Help file name and window specification by putting them in a separate text file. Setting this file up in INI file format lets you use standard INI file commands to access this "text database."

2a Connect form level F1 Help

Note: you can only implement 2a or 2b or 2c within the "normal" way of using What's This? Help.

· Set the form's WhatsThisHelp property to False. On forms that support the WhatsThisButton property it will also be set to False. MDI forms do not support the WhatsThisButton property.

· Set the form's HelpContextID property. This number must match the topic ID in the [MAP] section of the Help project (.hpj) file.

2b Connect What's This? Help to a dialog box

Note: you can only implement 2a or 2b or 2c within the "normal" way of using What's This? Help.

· Set the form's WhatsThisButton property to True. This also sets the WhatsThisHelp property to True.

· Set the form's BorderStyle property to Fixed Single or Fixed Dialog.

· For each control with a What's This? Help topic, set the WhatsThisHelpID. This number must match the topic ID in the [MAP] section of the Help project (.hpj) file.

Note: You can only activate the What's This? Help button on the title bar in fixed windows and dialog boxes. For all other forms you must activate What's This? Help from a button or menu item.

2c Connect What's This? Help to a resizeable window

Note: you can only implement 2a or 2b or 2c within the "normal" way of using What's This? Help.

· Set the form's WhatsThisHelp property to True.

· Create a What's This? Help button for the toolbar that can be toggled.

· In the MouseDown event of What's This Help? button, place any code necessary for putting the button in it's "down" state.

· In the MouseUp or Click event of What's This Help? button, place the following code: VB does not correctly trigger What's This? Help mode if you put this code in the MouseDown event.

'**Set What's This? Help mode

WhatsThisMode

'**Toggle the button state if necessary.

'**Any commands placed here will not be executed until

'**What's This? Help mode is released.

....Code for setting the What's This? Help button to "up"

Notes:
· This activates What's This Help mode for visible child forms, but not for any other non-modal forms that may be open.

· Any code in the subroutine after you call the WhatsThisMode method will not be executed until What's This? Help mode is released by VB.

· The next mouse down event will be processed by the What's This? Help logic without triggering an event you can intercept.

· I find it easier to put this code in the Click event. That way you can call the button Click subroutine from the What's This? Help menu item without worrying about parameters.

· For each control with a What's This? Help topic, set the WhatsThisHelpID. This number must match the topic ID in the [MAP] section of the Help project (.hpj) file.

· In the Help menu, create an item called What's This? Help and assign SHIFT-F1 as the shortcut. In the Click event for this menu item, call the What's This? button Click or Mouse Up event where you put the WhatsThisMode command.

· In the MouseUp or Click event of What's This Help? button, activate What's This? Help mode for any non-child non-modal form (such as a tool) that you want included in the What's This Help logic. These forms must have a WhatsThisHelpID set for each control, and their WhatsThisHelp property set to True. The code would look something like this:

'**Set What's This? Help mode for tools that are open

If mnu_ColorWheel.Checked = True then

FrmTool1.WhatsThisMode

End If

Tips:

· You can trigger What's This? Help mode programmatically from any control that offers a MouseUp or Click event.

· In C++, a menu item and equivalent toolbar item usually have the same control ID and thus the same context ID (though this can be overridden). In VB you can easily set the WhatsThisHelpID for each of these separately.

3 Connect Help to a menu item

When you create the menu item, include the context ID in the Menu Editor's HelpContextID box. When there is a context ID in this box, VB will open that topic in a standard window when you highlight the menu item and press F1.

Calling WinHelp Directly From Your Code in VB5 and VB6

You can programmatically call Help from anywhere in your code. The most common reasons for doing this would be to open the Help Table of Contents from the Help menu or to call a general Help topic from a Help button on a form, but you can also call Help using keywords.

WinHelp API Syntax

The WinHelp function starts Windows Help (WINHLP32.EXE) and passes additional data indicating the nature of the help requested by the application. To use the following API calls you must attach WinHelp.bas or Winhelp.cls (see References for where to get these).

BOOL WinHelp(HWND hWndMain, LPCTSTR lpszHelp,

UINT uCommand, DWORD dwData)

If the function succeeds, the return value is nonzero. If the function fails, the return value is zero.

hWndMain is the handle of the window requesting Help. The WinHelp function uses this handle to keep track of which applications have requested Help. If the uCommand parameter specifies HELP_CONTEXTMENU or HELP_WM_HELP, hWndMain identifies the control requesting Help.

lpszHelp is the address of a null-terminated string containing the path, if necessary, and the name of the help file that WinHelp is to display.

Note: The filename may be followed by an angle bracket (>) and the name of a secondary window if the topic is to be displayed in a secondary window rather than in the primary window. The name of the secondary window must have been defined in the [WINDOWS] section of the Help project (.HPJ) file.

uCommand specifies the type of help requested. For a list of possible values and how they affect the value to place in the dwData parameter. For a list of possible values, see Help Command Constants below.

dwData specifies additional data. The value used depends on the value of the uCommand parameter. For a list of possible values, see Help Command Constants below.

WinHelp API Examples

In the examples below "hWnd" is the hWnd for your form, it's assumed that you have set the full path and file name for the Help file in App.HelpFile, "TopicID" is the ID for the desired topic, and "success" is an Long value.

To display the Help file Contents topic:

success = WinHelp(frmMain.hWnd, App.HelpFile, HELP_CONTENTS, ByVal 0&)

To display the Help Search dialog:

success = WinHelp(hWnd, App.HelpFile, HELP_PARTIALKEY, "")

To display a specific topic in a standard window:

success = WinHelp(hWnd, App.HelpFile, HELP_CONTEXT, ByVal CLng(TopicID))

To display a specific topic in a popup:

success = Winhelp(hWnd, App.HelpFile, HELP_CONTEXTPOPUP,

ByVal CLng(TopicID))

To display a topic or topics using a K Keyword:

success = Winhelp(hWnd, App.HelpFile, HELP_KEY, ByVal keyWord$)

To display a topic or topics using an A Keyword after testing to see if the keyword exists:

helpCommand$ = "IF(KL(`" & keyWord$ & "', 4, `', `'),

`KL(`" & keyWord$ & "', 1, `', `')')"

success = WinHelp(hWnd, App.HelpFile, HELP_COMMAND, ByVal helpCommand$)

To force the Help file closed:

success = Winhelp(hWnd, App.HelpFile, HELP_QUIT, ByVal 0&)

Using the Common Dialog control to call WinHelp

You can use the Common Dialog control to call WinHelp without having to use Windows API calls. The relevant properties and methods are:

· HelpFile sets the Help file to open.

· HelpCommand sets the Help command to use. There is a VB constant corresponding to most of the WinHelp API call uCommand values. For a list of possible values, see Help Command Constants below.

· HelpContext sets the topicID if HelpCommand is set to a value that requires a topic ID

· HelpKey sets the K Keyword to display topics for. You must set HelpCommand = cdlHelpKey when you use this property.

· ShowHelp sends the Help command according to current property settings.

A typical Help call would look like this:

frmMain.CommonDialog1.HelpFile = App.HelpFile

frmMain.CommonDialog1.HelpContext = topicID

frmMain.CommonDialog1.HelpCommand =

frmMain.CommonDialog1.HelpKey =

frmMain.CommonDialog1.ShowHelp

Help command constants

The following list shows the possible values for the uCommand parameter (WinHelp API) or the Common Dialog control HelpCommand property (CD), its value, its action, and the corresponding formats of the dwData command:

HELP_COMMAND (API) or cdlHelpCommand (CD) (0x102) executes a Help macro or macro string. dwData is the address of a string that specifies the name of the Help macro(s) to run. If the string specifies multiple macro names, the names must be separated by semicolons. You must use the short form of the macro name for some macros because Windows Help does not support the long name.

HELP_CONTENTS (API) or cdlHelpContents (CD) (3 or 0x003) displays the topic specified by the Contents option in the [OPTIONS] section of the .HPJ file. This command is for backward compatibility. New applications should provide a .CNT file and use the HELP_FINDER command. dwData is ignored. Set it to 0.

HELP_CONTEXT (API) or cdlHelpContext (CD) (1 or 0x001) displays the topic identified by the specified context identifier defined in the [MAP] section of the .HPJ file. dwData is an unsigned long integer containing the context identifier for the topic. In VB, set the HelpContext property to the context ID.

HELP_CONTEXTPOPUP (API) or cdlHelpContextPopup (CD) (8 or 0x008) displays the topic identified by the specified context identifier defined in the [MAP] section of the .HPJ file in a pop-up window. dwData is an unsigned long integer containing the context identifier for a topic.

HELP_FORCEFILE (API) or cdlHelpForceFile (CD) (9 or 0x009) ensures that Windows Help is displaying the correct help file. If the incorrect help file is being displayed, Windows Help opens the correct one; otherwise, there is no action. dwData is ignored. Set it to 0.

HELP_HELPONHELP (API) or cdlHelpHelpOnHelp (CD) (4 or 0x004) displays help on how to use Windows Help, if the WINHLP32.HLP file is available. dwData is ignored. Set it to 0.

HELP_INDEX (API) or cdlHelpIndex (CD) (3 or 0x003) is the same as HELP_CONTENTS.

HELP_KEY (API) or cdlHelpKey (CD) (0x101) displays the topic in the keyword table that matches the specified keyword, if there is an exact match. If there is more than one match, displays the Index with the topics listed in the Topics Found list box. dwData is the address of a keyword string. In VB, set the HelpKey property to the required keyword. Multiple keywords must be separated by semicolons.

HELP_PARTIALKEY (API) or cdlHelpPartialKey (CD) (0x0105)displays the topic in the keyword table that matches the specified keyword, if there is an exact match. If there is more than one match, displays the Topics Found dialog box. To display the Index without passing a keyword, you should use a pointer to an empty string. dwData is the address of a keyword string. In VB, set the HelpKey property to the required keyword. Multiple keywords must be separated by semicolons.

HELP_QUIT (API) or cdlHelpQuit (CD) (2 or 0x0002) informs Windows Help that it is no longer needed. If no other applications have asked for Help, Windows closes Windows Help. dwData is ignored. Set it to 0.

HELP_SETCONTENTS (API) cdlHelpSetContents (CD) (5 or 0x0005) specifies the Contents topic. Windows Help displays this topic when the user clicks the Contents button if the help file does not have an associated .CNT file. dwData is an unsigned long integer containing the context identifier for the Contents topic. In VB, set the HelpContext property to the context ID.

HELP_SETINDEX (API) cdlHelpSetIndex (CD) (5 or 0x0005) is the same as HELP_SETCONTENTS.

Additional commands are available through the WinHelp API. See the Programmer's Guide to WinHelp for descriptions of these additional commands.

Command Line Syntax

You can use the Shell command to call WinHelp. Each time you use this command a new instance of WinHelp is opened. The Shell command looks something like:

Shell(WinHelpCommandLine, WindowStyle)

The syntax for WinHelpCommandLine is shown below.

WindowStyle is optional and specifies how to open the window. See VB documentation for values.

The command line syntax for calling WinHlp32.exe is as follows:

winhlp32.exe [[-H] [-G[n]] [-W window] [-K keyword] [-P pop-up]

[-N contextNum] [-I topicID] helpFile]

-H displays the Winhlp32.hlp Help file.

-G[n] creates a configuration (.gid) file and quits. If a number is specified, it determines which extensible tab to display by default the first time the Help file is opened. A value of 1 would be the first tab beyond the Find tab. This command cannot be used with -S.

-S creates a configuration (.gid) file without showing an animated icon. Cannot be used with -G.

-W window specifies the window for displaying the topic. This command cannot be used with -P.

-P specifies that the topic will be shown in a pop-up window. This command cannot be used with -W. You must use the -P switch in combination with the -N (context number) or -I (topic ID) switch, depending on whether you want to specify the context number (from the [MAP] section of the HPJ file) or the topic ID string (from the # footnote of the topic).

-K keyword specifies the topic to open using a keyword. This command cannot be used with -I or -N.

-N contextNum specifies the topic to open using a topic number, which must be defined in the [MAP] section of the HPJ file. This command cannot be used with -I or -K.

-I topicID specifies the topic to open using a topic ID string (# footnote in the topic). This command cannot be used with -N or -K.

helpFile specifies the Help file to open. Unless you are calling WinHelp from the directory with the Help file, this must be a full path and file name. If you don't specify a Help file, the File Open dialog box appears.

Tips:

· If you use long file names with spaces, you must enclose the entire path and file name in quotes.

· The -G switch should be used by Setup programs when they install a newer version of a Help file or a contents file. This switch causes the .gid file to be rebuilt. Supposedly WinHelp will automatically build the .gid file anyway the first time a Help file is opened — unless the WinHelp -g command has already been run on the file — but don't trust it..

Setting Context Sensitive HTML Help for VB5 the Official Way

You don't. VB does not recognize .chm files as a Help file format. If you use VB5 and want HTML Help you will need to make all calls directly from code to the WinHelp API or use David Liske's subclassing.

Setting Context Sensitive HTML Help for VB6 the Official Way

This is just like setting up for context sensitive WinHelp except that you specify a .chm file instead of a .hlp file for the App.HelpFile property.

Calling WinHelp Directly From Your Code in VB5 and VB6 the Official Way

This is just like calling the WinHelp API except that the API is different, and of course Microsoft did not provide VB function and variable definitions (though they did provide them for C++ if anyone is interested in converting the .h file).

What's Wrong With the Official Way?

· VB5 does not recognize HTML Help as a Help file format for the App.HelpFile property.

· The VB5 and VB6 common dialog controls do not recognize HTML Help as a Help file format.

· HTML Help text popups often appear behind the app in VB6.

· You can't do training cards from a VB application, since it does not support message loops.

· Menu items are treated differently from other controls by F1 key logic. Since they only have a HelpContextID property and not a WhatsThisHelpID, WinHelp opens them in the window specified in the App.HelpFile property, not in a popup.

· Menus aren't "seen" by the VB What's This? Help logic since they don't have WhatsThisHelpID property.

· MDI forms can't trap the F1 key. F1 will always trigger the topic specified by the WhatsThisHelpID when the WhatsThisHelp property is turned on for an MDI form.

· HTML Help popups are text only.

What Can You Do About It?

What you can do depends on what you need to do in any given project.

VB5 does not recognize HTML Help

Update to VB6 (see next objection) or use David Liske's Help subclassing.

The VB5 and VB6 common dialog controls don't support HTML Help

Use the WinHelp API instead of the Common dialog control to call HTML Help from code.

HTML Help text popups often appear behind the app in VB6

Use WinHelp for the popups or use David Liske's Help subclassing.

You can't do training cards from a VB application

Use David Liske's Help subclassing.

Menu items are treated differently from other controls by F1 key logic
Menus aren't "seen" by the VB What's This? Help logic

Because of how VB builds menus, Help calls resulting from a highlighted menu item and the F1 key are not even seen by David Liske's subclassing module.

You can't trap the F1 key in an MDI form

Use David Liske's Help subclassing. Even this will not trap the F1 key when you have a menu item highlighted.

HTML Help popups are text only

Use WinHelp for your popups and HTML Help for the rest.

Resources

All of the following are available through my web site (www.smountain.com).

· Latest update of this document

· Programmer's Reference to WinHelp (by Don Lammers and Paul O'rear)

· David Liske's Help subclassing tutorial and modules

· WinHelp.bas (WinHelp API constants and declarations by Don Lammers)

· Winhelp.cls (WinHelp API in a class wrapper by Dana Cline)

· WinHelp 4.0 Unofficial Bug and Anomaly List (currently maintained by Don Lammers)

· WinHelp FAQ File (by Charlie Munro)

Reference Sites

· David Liske's HTML Help site—www.vbexplorer.com/htmlhelp.asp

· Helpful Solutions (Paul O'Rear)—www.helpfulsolutions.com

· TANSTAAFL Software (Dana Cline)—www.tanstaafl-software.com

· World Wide Resources—www.wwwinnovations.com/resources

· WinHelp Survival Kit—www.geocities.com/area51/6793/helpsurv.htm

· The WinHelp Resource Directory (WinHelp Journal)—www.winwriters.com

Connecting Help to Visual Basic Programs

Don Lammers

Page 10

Connecting Help to Visual Basic Programs

Don Lammers

Page 9

