DLLs as Functions

If you are using Visual C++ version 1, 2, 4 or 5, each function name must be listed in the .DEF file as an explicit export. In Visual C++ version 3 this is not necessary. I have not tested this on VC++ version 6 yet. Don't trust the VC++ documentation about this. If it's not in the .DEF file in the listed versions, WinHelp will not find the function.

Note that "FAR PASCAL _export" used through C++ version 3 has been replaced with "__declspec(dllexport) WINAPI" in the function definition (C++ file) and "extern __declspec(dllexport) WINAPI" in the function declaration (.H file).

Finding if you are in 16-bit or 32-bit windows

I've seen (and even used) some more sophisticated versions but this one gives you the basic 16/32-bit comparison. This version is used in my Expandable TOC for Windows 3.1.

Registering it in the .HPJ File:

RegisterRoutine(`dllname.dll', `IsWin31', `U=U')

Code in the .H file:

extern "C"

{

	int FAR PASCAL _export IsWin31 (int);

}

Code in the .C or .CPP file:

//***

//	IsWin31

//		Checks to see if the current op system is Windows 3.1

//	Registering in the HPJ file

//		RegisterRoutine(`dllname.dll', `IsWin31', `U=U')

//	Parameters:

//		junk--must be an integer--any integer

//	Return value:

//		1 if current system is Windows 3.1 and 0 if it is not.

//**

int FAR PASCAL _export IsWin31 (int junk)

{

	//Find the current Windows version

	int thisver;

	int thislittlever;

	DWORD dwVersion;

	dwVersion = GetVersion();

	thisver = LOBYTE(LOWORD(dwVersion));

	thislittlever = HIBYTE(LOWORD(dwVersion));

	if (thisver > 3 || thislittlever > 50)

	{ //We are in Windows 95 or above

		return 0;

	}

	else

	{ //We are in Windows 3.1

		return 1;

	}

}

�Finding if you are in 256 color mode

The following snippet just checks to see if we are in 256 color (or less) mode for display. I use this one a lot when working for the scanner divisions at HP to steer to appropriate Help topics depending on the current display color depth.

Registering it in the .HPJ File:

RegisterRoutine(`dllname.dll', `Is256Colors', `U=U')

Code in the .H file:

extern "C"

{

	BOOL extern __declspec(dllexport) WINAPI Is256Color (HWND);

}

Code in the .C or .CPP file:

//***

//	Is256Colors

//		Checks to see if we are running at 256 colors or less

//	Registering in the HPJ file

//		RegisterRoutine(`dllname.dll', `IsWin31', `U=U')

//	Parameters:

//		int hwndHelp The help window handle, so I can get a device context.

//	Return value

//		1 if 256 colors or less, 0 if higher color depth

//***

BOOL __declspec(dllexport) WINAPI Is256Color (HWND hwndHelp)

{

	HDC hdcHelp = GetDC(hwndHelp);

	int colorDepth = GetDeviceCaps(hdcHelp, NUMCOLORS);

	if (colorDepth < 0)

	{

		return 0;

	}

	else

	{

		return 1;

	}

}

�LDLLHANDLER

LDLLHandler is a handy utility which lets you do a lot of things, but which I seem to use mostly for keeping the DLL open as long as the Help file is open, and to use the FApi command to send macro commands as needed directly to the Help file. Unlike the WinHelp API, which only talks to the "WinHelp" instance of a Help file, this function lets you talk to the instance of WinHelp that called the DLL. To use this handler, you must include HELPDLL.H.

The following code is activated when WinHelp first opens the DLL for any reason. If you don't have any other functions, you need to add a do nothing function that you can call to initialize.

GetCallBacks actually finds the addresses of the various functions within WinHelp, so you can call them from the DLL. It must be called when LDLLHandler gets the DW_CALLBACKS message.

LDLLHandler is much more thoroughly documented in Jim Mischell's The Developer's Guide to WINHELP.EXE (see Bibliography) and in the Help Programmer's Reference by Don Lammers & Paul O'Rear.

GetCallBacks

//**

// GetCallBacks -- Copy internal WinHelp function pointers.

//**

BOOL GetCallBacks (VPTR VPtr, long lVersion) {

	HWND hWnd;

	hWnd = GetActiveWindow();

	HfsOpenSz = (LPFN_HFSOPENSZ) VPtr[HE_HfsOpenSz];

	RcCloseHfs = (LPFN_RCCLOSEHFS) VPtr[HE_RcCloseHfs];

	HfOpenHfs = (LPFN_HFOPENHFS) VPtr[HE_HfOpenHfs];

	RcCloseHf = (LPFN_RCCLOSEHF) VPtr[HE_RcCloseHf];

	LcbReadHf = (LPFN_LCBREADHF) VPtr[HE_LcbReadHf];

	LTellHf = (LPFN_LTELLHF) VPtr[HE_LTellHf];

	LSeekHf = (LPFN_LSEEKHF) VPtr[HE_LSeekHf];

	FEofHf = (LPFN_FEOFHF) VPtr[HE_FEofHf];

	LcbSizeHf = (LPFN_LCBSIZEHF) VPtr[HE_LcbSizeHf];

	FAccessHfs = (LPFN_FACCESSHFS) VPtr[HE_FAccessHfs];

	ErrorW = (LPFN_ERRORW) VPtr[HE_ErrorW];

	ErrorSz = (LPFN_ERRORSZ) VPtr[HE_ErrorSz];

	LGetInfo = (LPFN_LGETINFO) VPtr[HE_GetInfo];

	FApi = (LPFN_FAPI) VPtr[HE_API];

	RcLLInfoFromHf = (LPFN_RCLLINFOFROMHF) VPtr[HE_RcLLInfoFromHf];

	RcLLInfoFromHfs = (LPFN_RCLLINFOFROMHFS) VPtr[HE_RcLLInfoFromHfs];

	return TRUE; }

HfsOpenSz opens a Help file system

RcCloseHfs closes a Help file system

HfOpenHfs opens a baggage file within a previously opened Help file system

RcCloseHf closes a baggage file

LcbReadHf reads from a baggage file

LTellHf returns the current baggage file position

LSeekHf sets the current baggage file pointer

FEofHf checks for end-of-file on a baggage file

LcbSizeHf determines the size in bytes of an open baggage file

FAccessHfs Determines if a baggage file exists

ErrorW displays a standard error message

ErrorSz displays an error message string

LGetInfo gets global information from the WinHelp application

FApi sends a WinHelp API function call to WinHelp

RcLLInfoFromHf obtains low level information about an open baggage file

RcLLInfoFromHfs obtains low level information about a named baggage file

�LDLLHandler

//**

//	LDLLHandler

//		Respond to WinHelp messages

//**

LONG __declspec(dllexport) WINAPI LDLLHandler (WORD wMsg, LONG lParam1, LONG lParam2) {

	switch (wMsg) {

	case DW_WHATMSG:

		{	/* Return the types of messages that you want to be notified of */

		return (DC_CALLBACKS | DC_ACTIVATE | DC_JUMP | DC_MINMAX | DC_INITTERM); }

		case DW_CALLBACKS:

		{	/* Get callback addresses */

			return GetCallBacks ((VPTR)lParam1, lParam2); }

		case DW_ACTIVATE:

		{	/* Received when WinHelp gains or loses focus */

			//Code here

			return TRUE; }

		case DW_STARTJUMP:

		{	/* Received when user selects a jump */

			//Code here

			return TRUE; }

		case DW_ENDJUMP:

		{	/* Received after the jump has been executed */

			//Code here

			return TRUE; }

		case DW_CHGFILE:

		{	/* Received when WinHelp loads a new file */

			//Code here

			return TRUE; }

		case DW_MINMAX:

		{	/* Received when the window is minimized or maximized. */

		 	if (lParam1 == 1) //It's a minimize command

		 	{

				//Code here

			}

			else //It's a maximize command

			{

				//Code here

			}

			return TRUE; }

		case DW_SIZE:

		{	/* Received when the window is sized */

			//Code here

			return TRUE; }

		case DW_INIT:

		{	/* Received when the DLL is initialized	*/

			//Code here

			return TRUE; }

		case DW_TERM:

		{	/* Received immediately before the DLL is unloaded. */

			//Code here

			return TRUE; }

		default : return TRUE;

	}

}

�The FApi Command

The FApi command is my favorite command available with the use of LDLLHandler. It uses the same parameters as the WinHelp API command.

FApi (qchHelp, wCommand, (DWORD) ulData)

qchHelp is a far pointer to a NULL terminated string containing the name of the Help file to be displayed.

wCommand is a WORD command that specifies the action for WinHelp to take. Values are the same as for the WinHelp API command.

ulData is a 32-bit quantity used to pass additional information to WinHelp. The contents of this command are determined by the wCommand parameter. If you are sending macros, you must ALWAYS use the short form of the macro if there is one.

Example:

FApi (`', HELP_COMMAND, (DWORD) "JI(`>multi', `RandomHelpTopic')")

Tells WinHelp to display a topic with the topic ID "RandomHelpTopic" from the current Help file in a window named "multi." Note that the short form of the JumpID macro is used. WinHelp does not recognize the long form of a macro command if a short form is available.

�Embedded Windows

Embedded windows let you (not WinHelp) control what is going on in a portion of the WinHelp window. Common usages are special graphics handling (like allowing 256-color graphics in WinHelp 3.1) and real buttons.

The Embedded Window Call

Embedded windows are called from the Help file using a command similar to the command used for displaying bitmaps:

{ewx dllName, windowClass, authorData}

x is replaced by c to insert the embedded window in the current position, l to left-align the embedded window, and r to right-align the embedded window.

dllName is the name of the DLL that contains the code for the embedded window.

windowClass is the name of the embedded window class defined in the DLL source code.

authorData is a string defined by the author and parsed by the DLL. It can contain whatever data the DLL requires for displaying the embedded window.

Defining the Window Class

You must define the window class itself in the initialization code of the DLL. A typical InitInstance function in an MFC application is shown below.�

BOOL CDLDemoApp::InitInstance() {

	// TODO: Add your specialized code here and/or call the base class

	if (!m_hPrevInstance) {

		WNDCLASS btn;

		HBRUSH hBrush = CreateSolidBrush(RGB(192, 192, 192));

		btn.style = 0;

		btn.lpfnWndProc = (WNDPROC)ProcessButton;

		btn.cbClsExtra = 0;

		btn.cbWndExtra = 0;

		btn.hInstance = NULL;

		btn.hIcon = NULL;

		btn.hCursor = NULL;

		btn.hbrBackground = hBrush;

		btn.lpszMenuName = NULL;

		btn.lpszClassName = (LPSTR)"DLButton";

		RegisterClass(&btn);

		DeleteObject((HGDIOBJ)hBrush); }

	hInstance = m_hInstance;

	return CWinApp::InitInstance(); }

�The Embedded Window handler

The embedded window handler parses the author string and displays the window. The example below displays a 16x16, 24x24, or 32x32 pixel button with bitmap. Depending on the setting of a "ShowButtons" keyword in the INI file, the button either appears at the correct size (ShowButtons=1) or has its height and width set to 0 (ShowButtons=0). If clicked, the button opens a file. The author string has three parts separated by spaces. These are the button number (necessary in case there is more than one button on a page) the size of the button, and the file to open. Of course, you can use any criteria for activating the button. The first project I used this for concealed the button (which opened English-only multimedia files) depending on the language of the program. The second version I did displayed the button only if the multimedia files were present in their correct folder.�

//Button structure

typedef struct custButtonData {

	int ID;

	char fileName[256];

	char jumpTopic[256];

	HWND Parent;

	HWND Hwnd;

	HINSTANCE hInstance;

	int State;

	int Size; } CUSTBTNDATA, FAR *OPT;

CUSTBTNDATA custButton[MAX_CUSTBUTTONS + 1] = {0};

static LRESULT btn_WMCommand(HWND hwnd, WPARAM wParam, LPARAM lParam) {

	char btnFileName[256];

	WORD wNotifyCode = HIWORD(wParam); // notification code

	int wID = LOWORD(wParam); // item, control, or accelerator identifier

	HWND hwndCtl = (HWND) lParam; // handle of control

	if (wNotifyCode != 0) return 0; // exit if command is from an accellerator

	if (hwndCtl = 0) return 0; // exit if not from a control

	wNotifyCode = HIWORD(wParam);

	wID = (int) LOWORD(wParam);

	strcpy (btnFileName, custButton[wID].fileName);

	if (IsFile(btnFileName))

	{	//Open the file

		OpenOnCD(btnFileName);

		//MessageBox(NULL, btnFileName, "Testing Button", MB_OK | MB_ICONSTOP); //The message box

	}

	return 0; }

LRESULT __declspec(dllexport) WINAPI ProcessButton(HWND hwnd, UINT wMsg, WPARAM wParam, LPARAM lParam) {

	static HFONT fontHandle;

	static int thisButton;

	static int custButtonSize;

	static LPSTR btnFileName;

	static HBRUSH hBrush = CreateSolidBrush(RGB(192, 192, 192));

	switch (wMsg) {

		case WM_CREATE: {

			//Get the structure information

			QCI qci;

			qci = (QCI)((LPCREATESTRUCT)lParam)->lpCreateParams;

			//Get INI file name

			char iniFile[512];

			GetINIFile(iniFile);

			//Copy the author string (button number, button size,

			//and file name) to our variable.

			char bNum[128];

			LPSTR pdest = strcpy (bNum, qci->szAuthorData);

			pdest = strchr(pdest, ' '); //Find the first space.

			*(pdest) = '\0';	//The first chars will be the button number.

			pdest++;

			LPSTR bSize = pdest;

			pdest = strchr(pdest, ' '); //Find the next space.

			*(pdest) = '\0';	//The second set of chars will be the size.

			pdest++;

			LPSTR bFileName = pdest; //The third set of chars is the file name.

			//Button number (starts with 1 in each topic)

			thisButton = atoi(bNum);

			custButton[thisButton].ID = thisButton;

			//Button size

			custButtonSize = atoi(bSize);

			custButton[thisButton].Size = custButtonSize;

			//Hwnd of the embedded window. This is the parent of the button

			//we are going to create.

			custButton[thisButton].Parent = hwnd;

			//The file name for the called file.

			strcpy (custButton[thisButton].fileName, bFileName);

			//See if we are supposed to show the buttons

			int showButton = GetPrivateProfileInt("General","ShowButtons", 0, iniFile);

			custButton[thisButton].State = showButton;

			custButton[thisButton].hInstance = ((LPCREATESTRUCT) lParam) -> hInstance;

			custButton[thisButton].Hwnd = CreateWindow ("BUTTON", "V", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON | BS_BITMAP, 0, 0, custButtonSize, custButtonSize, hwnd, (HMENU)thisButton, custButton[thisButton].hInstance, NULL);

			//The bitmap is not put on the button face here because the WinHelp

			//window can be created multiple times before finally being shown.

			//See the WM_PAINT message handler.

			//Save the button ID for later

			SetWindowLong(hwnd, GWL_USERDATA, thisButton);

			return 0; }

		case EWM_ASKPALETTE:

		case EWM_FINDNEWPALETTE:

		case EWM_RENDER:

			return 0;

		case EWM_QUERYSIZE: {

			//WinHelp is asking how big to make the window.

			//Retrieve the button ID.

			int wID = GetWindowLong(hwnd, GWL_USERDATA);

			LPPOINT lp;

			//Return window size to WinHelp

			lp=(LPPOINT)lParam;

			if (custButton[wID].State == 0){

				lp->x = 0;

				lp->y = 0; }

			else {

				lp->x = custButton[wID].Size;

				lp->y = custButton[wID].Size; }

			return TRUE; }

		//Some standard window messages that I've used in the past.

		//This section remains as a reminder.

		//case WM_CTLCOLORBTN:

		//case WM_CTLCOLORDLG:

		//case WM_CTLCOLOREDIT:

		//case WM_CTLCOLORLISTBOX:

		//case WM_CTLCOLORMSGBOX:

		//case WM_CTLCOLORSCROLLBAR:

		//case WM_CTLCOLORSTATIC:

�		case WM_PAINT: {

			//This is where we put all the actual display stuff, since this call

			// happens only once while the window is being displayed.

			PAINTSTRUCT ps;

			BeginPaint (hwnd, &ps);

			EndPaint (hwnd, &ps);

			//Retrieve the button ID

			int wID = GetWindowLong(hwnd, GWL_USERDATA);

			//Load the correct bitmap for the button size

			HBITMAP bmpHandle;

			if (custButton[wID].Size < 22)

			{	//This is a small button (16 x 16 bits)

				bmpHandle = LoadBitmap(hInstance, MAKEINTRESOURCE(IDB_BUTTON16)); }

			else if (custButton[wID].Size < 30)

			{	//This is a medium button (24 x 24 bits)

				bmpHandle = LoadBitmap(hInstance, MAKEINTRESOURCE(IDB_BUTTON24)); }

			else

			{	//This is a large button (32 x 32 bits)

				bmpHandle = LoadBitmap(hInstance, MAKEINTRESOURCE(IDB_BUTTON32)); }

			//Let the button know where to find the bitmap

			SendMessage(custButton[wID].Hwnd, (WPARAM) BM_SETIMAGE, IMAGE_BITMAP, (LPARAM) (HANDLE) bmpHandle);

			return 0; }

		case WM_SHOWWINDOW: {

			return 0; }

		case WM_COMMAND: {

			return btn_WMCommand(hwnd, wParam, lParam); }

		case WM_DESTROY: {

			//Delete any font handle and set variable to zero

			if (fontHandle) {

				DeleteObject((HGDIOBJ)fontHandle);

				fontHandle = 0; }

			//Delete any brush handle and set variable to zero

			if (hBrush) {

				DeleteObject((HGDIOBJ)hBrush);

				hBrush = 0; }

			return 0; }}

	return DefWindowProc (hwnd, wMsg, wParam, lParam); }

�Adding Tabs to the Help Topics Dialog

The Basics

You can add a tab to the Help Contents dialog box by creating a DLL to handle its functionality and then referencing it in the .CNT file. A few rules apply:

Each tab must be in a separate DLL.

WinHelp will size the dialog box to fit inside the tab it creates, so don't do it in the DLL.

For the dialog box style, specify no borders, then assign the following styles: DS_3DLOK, WSS_CHILD, DS_CONTROL, and WS_TABSTOP.

Don't add OK and Cancel buttons. These are handled by WinHelp.

Export a function called OpenTabDialog (details below). WinHelp looks for this function when it calls the DLL.

Don't use the WS_VISIBLE dialog box style. Make the box visible using the ShowWindow function.

Adding the Tab to the Contents File

To add the tab to the Help Topics dialog box, add the following line in the .CNT file:

:Tab tabCaption=nameOfDLL

tabCaption is the caption that will appear in the tab.

nameOfDLL is the DLL that will handle the tab functionality. The best place to put the DLL is generally in the same folder as the Help file, though it can be in the Windows path.

The OpenTabDialog Function

WinHelp looks for this function when it opens the DLL. From here you create the new dialog box using the CreateDialog function.

HWND __declspec(dllexport) WINAPI OpenTabDialog(HWND hwnd, DWORD dw1, DWORD dw2) {

	CWinApp* theApp = AfxGetApp();

	HINSTANCE dllInstance = theApp->m_hInstance;

	return CreateDialog(dllInstance, MAKEINTRESOURCE(IDD_DIALOG1), hwnd, TabDialogProc); }

TabDialogProc is the name of the tab dialog procedure, and can be anything you want it to be.

The Tab Dialog Procedure

The tab dialog procedure is named in the CreateDialog function called by OpenTabDialog.�

BOOL WINAPI TabDialogProc(HWND hdlg, UINT msg, WPARAM wParam, LPARAM lParam) {

	switch (msg) {

		case WM_INITDIALOG: {

			//Any code necessary for loading data into the dialog box or for other initialization goes here.

			ShowWindow(hdlg, SW_SHOW);

			return TRUE; }

		case WM_COMMAND: {

			if (wParam==IDOK||HIWORD(wParam)==LBN_DBLCLK) {

				//Code for handling the OK button. }

			break; }

		default:

			return 0; }

	return 0; }

�Router DLLs

Router DLLs make it easy for the programmer and Help author to make necessary changes to window styles, the Help file type (i.e., WinHelp vs. HTML Help), etc., especially when the Help author also dabbles in programming. If all programming is being done by the software gurus, the same code can be in a function within the application. The whole point of the exercise is to send all Help calls to one place where you can then sort out where they need to go. This example shows a separate modal dialog box that appears in response to certain topic numbers. The Help author has control of the text and all labels in this dialog box, through entries in the INI file.

int __declspec(dllexport) WINAPI OpenTopic (HWND hwndApp, DWORD Topic) {

	//Get INI file name

	char iniFile[512];

	GetINIFile(iniFile);

	//See if we are supposed to display the topic number for debugging

	if (GetPrivateProfileInt("General", "showTopicNumber", 0, iniFile) != 0) {

		char buffer[256];

		wsprintf(buffer, "About to open topic number %u (%X hex)", Topic, Topic);

		MessageBox(NULL, buffer, "Topic Number", MB_OK | MB_ICONINFORMATION); }

	char cHelpCall[512];

	if (Topic == 0)

	{	//The close button on the title bar

		GetFullFileSpec ("dl_demo.hlp", iniFile, cHelpCall);

		WinHelp(hwndApp, cHelpCall, HELP_CONTEXTPOPUP, (DWORD)Topic); }

	else if (Topic == 999)

	{ //Open the Help Topics dialog box

		WinHelp(NULL, "dl_demo.hlp", HELP_FINDER, 0);

		return 0; }

	else if (Topic < 100)

	{	//Warnings

		char cTopic[64];

		wsprintf(cTopic, "topic%lu", Topic);

		int noShow = GetPrivateProfileInt(cTopic,"NoShow", 0, iniFile);

		if (noShow == 0) {

			CWarnDlg cWarningDialog;

			cWarningDialog.m_WarningText = _T(cTopic);

			cWarningDialog.m_pszINIFile = iniFile;

			//Open the dialog box

			int branch = cWarningDialog.DoModal();

			return branch; }

		else {

			return 1; }}

	else if (Topic == 201)

	{	// Primary window topics

		GetFullFileSpec ("dl_demo.hlp>main", iniFile, cHelpCall);

		WinHelp(hwndApp, cHelpCall, HELP_CONTEXT, (DWORD)Topic);

		return 0; }

	else if (Topic < 400)

	{	// Secondary window topics

		GetFullFileSpec ("dl_demo.hlp>intrface", iniFile, cHelpCall);

		WinHelp(hwndApp, cHelpCall, HELP_CONTEXT, (DWORD)Topic);

		return 0; }

	else

	{	// Popup help for menu items and controls.

		GetFullFileSpec ("dl_demo.hlp", iniFile, cHelpCall);

		WinHelp(hwndApp, cHelpCall, HELP_CONTEXTPOPUP, (DWORD)Topic);

		return 0; }

	return 0; }

�Title�Doc-To-Help Standard Template�	�styleref "1"�Router DLLs� (�PAGE�11�

