
Connecting HTML Help to C++/MFC Programs

by Don Lammers

Copyright 1999-2001 by Don Lammers. All rights reserved.

Last updated 2001-02-22

Presented with author's permission by

Shadow Mountain Tech

Connecting HTML Help to C++/MFC Programs 1

Contents
Scope.. 1
Acknowledgements.. 1
Connecting Context Sensitive WinHelp to C++/MFC Programs .. 2
Opening HTML Help Directly from Your C++ Code ... 11
Training Cards from C++... 18
Resources ... 19

Scope
Although optimized for WinHelp (as of Visual Studio 6), MFC provides several hooks for easily connecting to
any online help, including HTML Help and HTML based help. In addition, you can call the HtmlHelp API from
anywhere in your program for additional access to help. The Connecting Context Sensitive Help to C++/MFC
Programs section shows how to connect to the built in hooks that MFC provides, and is therefore specific to
programming with MFC. The remainder of the document should be easily adaptable to any version of C++, as it
sets forth the Windows calls and command line interface for HTML Help.

Acknowledgements
The following information is from my own experimentation and from people who have walked this path before
me. Thanks to all of the following:
Microsoft HTML Help WorkShop Help, Microsoft Knowledge Base, The Developer's Guide to WINHELP.EXE
(Jim Mischel), Building Windows 95 Help (Nancy Hickman), Paul O'Rear, Developing Online Help for Windows
95 (Boggan, Farkas, and Welinske), Gordon F. MacLeod, Burt Abreu.

Connecting HTML Help to C++/MFC Programs 2

Connecting Context Sensitive HTML Help to C++/MFC Programs
MFC provides for calling WinHelp topics using the WinHelp function of the CWnd class, from which the Main
Frame window of your program is derived if you use the App Wizard. In addition you can override dialog box
routines to get control level F1 or right click help if needed. In order to use HTML Help you must override the
WinHelp function and directly call the HtmlHelp API.
This section shows the steps necessary to hook context sensitive HTML Help into a program created using
MFC.

Create a Program with Built-In Help
Since you need to override the automated hooks anyway, and the App Wizard also creates WinHelp files which
you will need to remove from your project file, the only reason to have the App Wizard create the hooks is to
get the help framework to convert to HTML or HTML Help. If the help author has a tool capable of this
conversion (all of the current help authoring tools can do this) it may save some time in setting up the initial file.

To create a new project with context sensitive help support:
1. From the Visual C++ File menu, choose New.
2. Choose MFC AppWizard (.exe).
3. When given the option, make sure that the Context Sensitive Help box is checked.
4. Continue through the process to set up the program the way you want.
5. Remove the .hlp file and folder that the App Wizard created for you. The help author will want these files.
This creates the following:

• An application with a menu and (if you requested it) a toolbar.
• A WinHelp file with topics for each of the automatically generated menu items and toolbar buttons. The

help author can use this framework as a starting point for conversion to HTML Help or HTML based
help.

• A .hm file with the topic ID to number mapping for the help file.

Automatically generated .hm files may not be in the correct format for HTML Help. HTML
Help requires constant definitions to be in standard C++ #define format. Check these files
before giving them to the help author.

• An operational What's This? Help button on the toolbar. Clicking this button puts the program into
What's This? Help mode. Clicking on a menu or control then opens its help.

• Shift-F1 hooked up to put the program into What's this? Help mode.
• F1 hooked up to open general help for the child window with focus or the control (but not menu) on

which the user is currently clicking.
• When you create a dialog box, F1 hooked up to open a general help topic for the whole dialog box.
• All help topics opened in the main WinHelp window.

Note:
• The above creates support for WinHelp. The following sections show how to override this to call HTML

Help or HTML based help.
• Since no dialog boxes are created in this process, you will need to add context sensitive help support for

each dialog box as you create it.
• Once you have the initial help file and .hm file, it is usually easier to have the help author add new topics

using their preferred help authoring tool. You can still have the program generate the framework help
each time you build, because that will give you appropriate additional topic mapping entries.

Connecting HTML Help to C++/MFC Programs 3

Set the Help File Name
The default help file name for an MFC generated program is the name of the executable with a .hlp extension.
Since you will be overriding the WinHelp function, this variable will never be used by MFC. On the other hand,
it's a handy place to store the help file name—especially if you only have a single help file.

To set the help file name for MFC calls:
• Set the m_pszHelpFilePath variable member of the application class in the InitInstance function.

m_pszHelpFilePath is a public variable of type const char*. According to MS, you should first free the
memory associated with the default string (the app name with a .hlp extension).
//First free the string allocated by MFC at CWinApp startup.
//The string is allocated before InitInstance is called.
free((void*)m_pszHelpFilePath);
//Change the name of the help file.
//The CWinApp destructor will free the memory.
m_pszHelpFilePath=_tcsdup(_T("d:\\somedir\\myhelp.chm"));

Tips:
• m_pszHelpFilePath can be changed at runtime, so you can reset it in code as needed to call additional

help files.
• If you have more than one help file to call from the program you should put the code for changing help

file names in a separate subroutine. This makes any changes during the project much easier to implement.
• You can let the help author edit the help file name and window specification by putting them in a separate

text file. Setting this file up in INI file format lets you use standard INI file commands to access this "text
database."

Make Sure HTML Help Can Find the Help File
Make sure that HTML Help can always find the help file. Since your program can be started from shortcuts
created by the user, the installation program should register the help file or you should call help from your
program using the full path and file name (or both).

If the help system contains more than one .chm file and a master Table of Contents (.hhc file), and
not all of these are in the same folder, it will be necessary to register the help file and the master
TOC to make the master TOC work, regardless of any other issues.

To ensure that the program and HTML Help can always find the help file:
• Register the help file by creating a string value under

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\HTMLHelp. The name of the string value is
the help file name (without path) and the value is the path.

• Always use the full path and file name when setting m_pszHelpFilePath, even if the help file is in the
same folder as the program executable.

Connecting HTML Help to C++/MFC Programs 4

Manually Add the Context Hooks
If you already have a program and need to add help, you can manually edit the files to create the necessary
hooks.

To add context sensitive help manually:
1. Add the necessary message map entries in the message map of the Main Frame class. If you created the

program with the MFC App Wizard and specified that you wanted context help, these items should already
be in the file.
ON_COMMAND(ID_HELP_FINDER, CMDIFrameWnd::OnHelpFinder)
ON_COMMAND(ID_HELP, CMDIFrameWnd::OnHelp)
ON_COMMAND(ID_CONTEXT_HELP, CMDIFrameWnd::OnContextHelp)
ON_COMMAND(ID_DEFAULT_HELP, CMDIFrameWnd::OnHelpFinder)

2. Copy the What's This? Help icon into a button on your toolbar. This icon is available as a bitmap in
C:\Program Files\Microsoft Visual Studio\Common\Graphics\Bitmaps\OffCtlBr\Small\Color\help.bmp.

3. Assign ID_CONTEXT_HELP to the What's This? Help button.

Note:
• This creates the same basic hooks in the program as the App Wizard, but does not generate a framework

help file or the .hm file with the topic ID mapping. You will need to create a list of IDs for the help author
to use.

Override the Default Context Help Behavior
The default WinHelp call made from the hooks automatically created by the App Wizard opens each help topic
in the main WinHelp window. However, you want this program to call HTML Help or HTML based help. In
addition, the current recommended behavior for this help is:

• Control level help is opened in a popup.
• Window level help is opened in a normal window (usually the main tri-pane window).

To create these conditions, you must override the default functions.

To create currently recommended behavior:
1. In the Main Frame class, create an OnHelpInfo function using the Class Wizard:

BOOL CMainFrame::OnHelpInfo(HELPINFO* pHelpInfo)
{
 return TRUE;
}

This effectively disables the function, and is necessary because, in combination with the next override, all
topics accessed through the F1 key will be called twice. Unfortunately you cannot use the OnHelpInfo
function in the Main Frame since (unlike in dialog boxes) it is triggered only by the F1 key and not by Shift-
F1 or the key.

Connecting HTML Help to C++/MFC Programs 5

2. In the Main Frame class, create a WinHelp function (yes, WinHelp, not HtmlHelp) using the Class Wizard:
void CMainFrame::WinHelp(DWORD dwData, UINT nCmd)
{
 CWinApp* theApp = AfxGetApp();
 CString helpFilePath = theApp->m_pszHelpFilePath;
 switch (dwData) {
 case HIDR_MAINFRAME:
 case HIDR_MFCWIZTYPE:
 case HIDD_ABOUTBOX:
 case HIDD_TESTDLG:
 //Topics that need to go into the main window.
 HtmlHelp(m_hWnd, helpFilePath, HH_HELP_CONTEXT, dwData);
 break;
 case WHATEVER
 //Topics that need to go into a different secondary window
 ...
 break;
 default:
 //All the rest are popups
 HtmlHelp(m_hWnd, helpFilePath, HH_HELP_CONTEXT, dwData);
 break; }
}

Tips:
• It is often easier to create a separate function or class to process the help calls and open topics in the

correct window. This can be part of the main program or can be created as a separate DLL. The main
advantage of a DLL is that it can be called from other programs if necessary.

• If you want the help author to be able to control the help file and window called by this function, class, or
DLL, put the help file and window definitions in an INI file (you can use the topic number as the key) and
look them up before calling Help. If you include the help type as an INI file entry you can easily call
multiple types of user assistance from the same program.

Connecting HTML Help to C++/MFC Programs 6

Activate Control Level Help for a Dialog Box
You can add control level help (What's This? Help) to a dialog box by overriding the OnHelpInfo function for
the dialog box class.

To add What's This? Help to a dialog box:
1. In the dialog box class, create a OnHelpInfo function using the Class Wizard:

BOOL cTestDlg::OnHelpInfo(HELPINFO* pHelpInfo) {
 //Get the control ID
 DWORD cControlID = pHelpInfo->iCtrlId;
 //Only proceed if it's not a static control
 if (cControlID != 65535) //65535 is IDC_STATIC
 {
 //Get the context ID for the control
 DWORD cTopic = pHelpInfo->dwContextId;
 //Get the hWnd for the app
 HWND hwndApp = m_hWnd;
 //Create an app object for this app
 CWinApp* theApp = AfxGetApp();
 //Get the help file name
 CString helpFilePath = theApp->m_pszHelpFilePath;
 //Call the HtmlHelp API. This bypasses all MFC code.
 HtmlHelp(m_hWnd, helpFilePath, HH_DISPLAY_TEXT_POPUP, cTopic);
 }
 return TRUE;
}

2. In the Extended Styles tab of its property sheet, make sure that Context help is on.

Note:
• You cannot add the What's This? Help button to any resizeable window or to a tool window.

Tip:
• If you want the What's This? Help button in a tool window, make it a Fixed Dialog window instead. The

only difference I've ever seen is that the title bar is slightly smaller on a tool window.

Connecting HTML Help to C++/MFC Programs 7

The HELPINFO Structure
Information about the control that is calling help is contained in the HELPINFO structure passed to the
OnHelpInfo function.

The HELPINFO structure is defined as follows:
typedef struct tagHELPINFO {
 UINT cbSize;
 int iContextType;
 int iCtrlId;
 HANDLE hItemHandle;
 DWORD dwContextId;
 POINT MousePos;
} HELPINFO, FAR *LPHELPINFO;

cbSize is the structure size, in bytes.
iContextType is the type of context for which Help is requested. This can be either HELPINFO_MENUITEM
(help was requested from a menu item) or HELPINFO_WINDOW (help was requested from a control or
window).
iCtrlId is the identifier of the window or control if iContextType is HELPINFO_WINDOW, or the menu
identifier if iContextType is HELPINFO_MENUITEM.
hItemHandle is the identifier of the child window or control if iContextType is HELPINFO_WINDOW, or
identifier of the associated menu if iContextType is HELPINFO_MENUITEM.
dwContextId is the help context identifier of the window or control.
MousePos is a POINT structure containing the screen coordinates of the mouse cursor.

Connecting HTML Help to C++/MFC Programs 8

Create a Single Help Calling Function
If you need to handle anything that is not standard MFC functionality it is usually easier to create a single help
calling function (I usually call it OpenTopic) somewhere in the program or in a separate DLL. In each of the
dialog box OnHelpInfo functions, in the Main Frame WinHelp function, and anywhere that you would have
called the HtmlHelp API directly, you call this function instead. This puts all of the logic behind determining
how to open a topic in one place and makes it easy to change as needed. You can easily treat other elements of
the online user assistance (multimedia, Acrobat files, etc.) as topics by assigning them a topic number and
handling the actual calls to them in this function. And of course you can mix help types (for instance HTML
Help and WinHelp) if this is necessary for some reason.
Most of the time this function needs only two parameters: the main window hWnd and the topic number.
However, if you have multiple programs potentially calling into the same help system, you may want to include
a program ID as a third parameter so you know who generated the request.
A sample DLL version of this topic is shown below
GetFullFileSpec is a function that extracts the path from the second parameter (in this case the DLL name) and
appends the first parameter (in this case the help file name and window) to create the necessary file name and
window combination to call HTML Help.
ChangeExtension is a function that replaces the extension on the first parameter with the string in the second
parameter.

To initialize and get the DLL name and location:
int __declspec(dllexport) WINAPI OpenTopic (HWND hwndApp, DWORD Topic)
{
 //Get the instance handle for the DLL
 CWinApp* theApp = AfxGetApp();
 HINSTANCE dllInstance = theApp->m_hInstance;
 //Get the name of the DLL
 char cDLLName[512];
 GetModuleFileName(dllInstance, cDLLName, 512);
 char cHelpCall[512];

To intercept the call and display the topic number for troubleshooting:
This simply shows the topic number called. To activate it you need to put a ShowTopicNumber=1 entry in the
[Genera] section of a text file that has the DLL path and name but with a .dat extension. This little bit of code
can often save hours of arguing over where the context help calls are broken, since it shows the exact numeric
value being sent by the program to help.

 //See if we are supposed to display the topic number for debugging
 char iniFile[256];
 ChangeExtension(cDLLName, ".dat", iniFile);
 if (GetPrivateProfileInt("General", "showTopicNumber", 0, \
 iniFile) != 0) {
 char buffer[256];
 wsprintf(buffer, "About to open topic number %d \
 (%X hex)", Topic, Topic);
 MessageBox(NULL, buffer, \
 "Topic Number", MB_OK | MB_ICONINFORMATION);
 }

Connecting HTML Help to C++/MFC Programs 9

To open the Help Topics dialog box:
See Calling the Help Finder below for more detail.

 if (Topic == 999)
 { //Open the Help Topics dialog box
 GetFullFileSpec("helpfile.hlp", cDLLName, cHelpCall);
 HtmlHelp(hwndApp, cHelpCall, HH_DISPLAY_TOC, NULL);
 return 0;
 }

To open a warning dialog box called as though it is a topic:
This section opens a warning message dialog box with multiple possible returns. The dialog box is modal
(which is one reason why we did not use a help topic to warn the user) and since the DLL is called from the
application the user must respond before the program can continue. When the program determines that a
warning condition exists, it calls OpenTopic with the appropriate topic number.
In the original version of this warning dialog, all text for the dialog box was stored in a text file so it could be
easily edited by the help author.
m_WarningText is the key that the dialog box will use to find the topic text in a text file.

 else if (Topic > 0 && Topic < 50)
 { //Warnings (warning agent popup topics)
 char cTopic[64];
 wsprintf(cTopic, "topic%lu", Topic);
 int noShow = GetPrivateProfileInt(cTopic,"NoShow", 0, iniFile);
 if (noShow == 0) {
 CWarnDlg cWarningDialog;
 cWarningDialog.m_WarningText = _T(cTopic);

 //Open the dialog box
 int branch = cWarningDialog.DoModal();
 return branch; }
 else {
 return 1; }
 }

To ignore certain topic numbers:
 else if (Topic == 65535)
 { // Generic Control ID--ignore
 return 0; }
 else if (Topic > 140000)
 { //Ignore these topic requests.
 //262144 = Separator between info bar and status bar
 //262150 = Horizontal scroll bar

 return 0; }

Connecting HTML Help to C++/MFC Programs 10

To open a topic in the tri-pane window:
 else if (Topic > 130000)
 { //Secondary window Help for dialog box overviews.
 HtmlHelp(hwndApp, cHelpCall, HH_HELP_CONTEXT, (DWORD)Topic);
 return 0; }

To open a topic in a secondary window:
 else if (Topic > 140000)
 { //Secondary window Help for dialog box overviews.
 GetFullFileSpec ("helpfile.chm>second", cDLLName, cHelpCall);
 HtmlHelp(hwndApp, cHelpCall, HH_HELP_CONTEXT, (DWORD)Topic);
 return 0; }

To open a topic as a popup:
 else
 { // Popup help for menu items and controls.
 GetFullFileSpec ("helpfile.hlp", cDLLName, cHelpCall);
 HtmlHelp(hwndApp, cHelpCall, HH_DISPLAY_TEXT_POPUP, (DWORD)Topic);
 return 0; }
 return 0;
}

Notes:
• The above code filters out any messages coming from controls assigned an ID of IDC_STATIC. If you

want static controls (labels) to also have context help, they must each be assigned unique identifiers.
• Since all controls in a program should have unique IDs, you may be able to use the control ID rather than

the context ID for this function. This is a smaller number and easier to deal with in the help mapping
(sorry, just being lazy).

Connect Context Help to a Right Click on a Button
The traditional way of connecting help to a right click on a control is to provide a popup menu with an item
named What's This?. When the user clicks this menu item, help opens to the appropriate topic. the basic steps in
creating such a link are:
1. When the user right clicks a control, and before opening a popup menu for the control, save the topic number

to call.
2. Implement whatever code is needed to open the popup menu with the appropriate items listed.
3. In the Click event for the What's This? menu item, call the HtmlHelp API with the appropriate topic

number.

Tip:
• Unless there are only a few controls that do not implement a right click menu, I recommend calling the

topic directly if the user right clicks a button that does not otherwise have a right click menu. A popup
menu with a single What's This? item looks a bit strange, and this saves the user one click.

Connecting HTML Help to C++/MFC Programs 11

Opening HTML Help Directly from Your C++ Code
You can programmatically open help from anywhere in your code. The most common reasons for doing this
would be to open the help Table of Contents from the Help menu or to call a general help topic from a Help
button on a form, but you can also call help using keywords.

HtmlHelp API Syntax
The HtmlHelp function starts HTML Help and passes additional data indicating the nature of the help requested
by the application. To use the following API calls you must attach htmlhelp.h and include htmlhelp.lib in you
links. These files are available in subfolders when you install the Microsoft HTML Help Workshop.

BOOL HtmlHelp(HWND hWndMain, LPCTSTR lpszHelp,
 UINT uCommand, DWORD dwData)

If the function succeeds, the return value is nonzero. If the function fails, the return value is zero.
hWndMain is the handle of the window requesting help. The HtmlHelp function uses this handle to keep track
of which applications have requested help. If the uCommand parameter specifies HELP_CONTEXTMENU or
HELP_WM_HELP, hWndMain identifies the control requesting help.
lpszHelp is a string containing the path, if necessary, and the name of the help file that HTML Help is to display.
For some commands it can also contain the file name of the specific topic. The format for this string is:

Helpfile.chm[::/Topic.htm][>Window name]

Note: The filename may be followed by an angle bracket (>) and the name of a secondary window if the topic
is to be displayed in a secondary window rather than in the primary window. The name of the secondary
window must have been defined in the [WINDOWS] section of the help project (.hhp) file.

uCommand specifies the type of help requested. For a partial list of possible values and how they affect the
value to place in the dwData parameter, see Help Command Constants below. For a full list, see the Microsoft
HTML Help Workshop Help.
dwData specifies additional data. The value used depends on the value of the uCommand parameter. For a
partial list of possible values, see Help Command Constants below. For a full list, see the Microsoft HTML Help
Workshop Help.

Connecting HTML Help to C++/MFC Programs 12

HtmlHelp Command Constants
The following list shows the possible values for the uCommand parameter, its value, its action, and the
corresponding formats of the dwData command. For details about each of the structures referred to in this
section, see Help Command Structures.
HH_DISPLAY_TOPIC (0 or 0x0000) selects the Contents tab in the navigation pane of the HTML Help
viewer (tri-pane window) and optionally displays a specified topic. If the topic is not specified in lpszHelp then
dwData is a string containing the file name of the topic to open (including relative folder information if
necessary). Otherwise dwData is 0& (NULL). If dwData is 0, you can specify the topic and/or defined window
in lpszHelp using the following format:

Helpfile.chm[::/Topic.htm][>Window name]

HH_DISPLAY_TOC (1 or 0x0001) is the same as HH_DISPLAY_TOPIC.
HH_DISPLAY_INDEX (2 or 0x0002) selects the Index tab in the navigation pane of the HTML Help viewer
(tri-pane window) and searches for a keyword. dwData is a string containing keyword to search for.
HH_DISPLAY_SEARCH (3 or 0x0003) selects the Search tab in the navigation pane of the HTML Help
viewer (tri-pane window) and performs a search. dwData an HH_FTS_QUERY structure that specifies the
search parameters.
HH_KEYWORD_LOOKUP (13 or 0x000D) searches for one or more keywords in a compiled HTML Help
(.chm) file. dwData is an HH_AKLINK structure containing the keywords to search for and the actions to be
taken if no matches are found.
HH_DISPLAY_TEXT_POPUP (14 or 0x000E) opens a pop-up window and displays one of the following:

• An explicit text string.
• A text string based on a resource ID
• A text string based on a text file contained in a compiled HTML Help (.chm) file.

To use an explicit text string or a string based on a resource identifier, set lpszHelp to an empty string. To use a
text string from a file contained in a compiled HTML Help (.chm) file, set lpszHelp to the name of the .chm file
and the text file within the .chm file. In either case dwData is an HH_POPUP structure.
HH_HELP_CONTEXT (15 or 0x000F) displays the topic identified by the specified context identifier defined
in the [MAP] section of the .HPJ file. dwData is an unsigned long integer containing the context identifier for
the topic.
HH_CLOSE_ALL (18 or 0x0012) closes all windows that have been opened directly or indirectly by the
calling program. hWndMain must be 0 (zero).lpszHelp must be an empty string. uCommand must be 0 (zero).
HH_ALINK_LOOKUP (19 or 0x0013) searches for one or more Associative link (Alink) names in a compiled
HTML Help (.chm) file. dwData is an HH_AKLINK structure containing the names to search for and the
actions to be taken if no matches are found.
Additional commands are available through the HtmlHelp API. See the HTML Help Workshop Help for
descriptions of these additional commands.

Connecting HTML Help to C++/MFC Programs 13

Help Structures
The following list shows the data that goes into each of the structures referred to in the Help Command
Constants section.

The HH_POPUP structure is defined as follows:
typedef struct tagHH_POPUP {
 int cbStruct;
 HINSTANCE hinst;
 UINT idString;
 LPCTSTR pszText;
 POINT pt;
 COLORREF clrForeground;
 COLORREF clrBackground;
 RECT rcMargins;
 LPCTSTR pszFont;
} HH_POPUP;

cbStruct is an Long variable which specifies the size of the structure. You must always fill in this value
before passing the structure.
hinst is a Long variable containing the instance handle for the string resource.
idString is a Long variable specifying the string resource ID, or the text ID if pszFile is specified in the
HtmlHelp call.
pszText is the explicit string to display. To display this string you must set idString to 0 (zero).
pt is a POINTAPI structure that specifies the top center of the popup window.
clrForeground specifies the foreground (text) color used in the pop-up. Use a VB color constant or a number
in the format &HBBGGRR.
clrBackground specifies the background color used in the pop-up. Use a VB color constant or a number in
the format &HBBGGRR.
rcMargins is a RECT structure indicating the amount of space between edges of window and text. Use -1 for
each member to ignore.
pszFont is a string containing the font to use in the pop-up. The string is in the following format:
facename[, point size[, char set[, BOLD ITALIC UNDERLINE]]]

You can skip an attribute by entering a comma for the attribute.

Note:
• This structure contains standard Windows POINTAPI and RECT structures, which must be defined in the

project. You can get these structures from the API Text Viewer that came with Visual Basic.

Connecting HTML Help to C++/MFC Programs 14

The HH_AKLINK structure is defined as follows:
typedef struct tagHH_AKLINK {
 int cbStruct;
 BOOL fReserved;
 LPCTSTR pszKeywords;
 LPCTSTR pszUrl;
 LPCTSTR pszMsgText;
 LPCTSTR pszMsgTitle;
 LPCTSTR pszWindow;
 BOOL fIndexOnFail;
} HH_AKLINK;

cbStruct is an Long variable which specifies the size of the structure. You must always fill in this value
before passing the structure.
fReserved is reserved. Must be False.
pszKeywords is a string containing the keywords to search for. Separate multiple keywords with simicolons.
pszURL is a string containing the name of the topic file to show if no matches are found. May be NULL. Use
the following format for this string:
Helpfile.chm[::/Topic.htm][>Window name]

pszMsgText is a string containing the message box text to display if fIndexOnFail is False and pszURL is an
empty string.
pszMsgTitle is a string containing the caption of the message box which will be displayed if fIndexOnFail is
False and pszURL is an empty string.
pszWindow is a string containing the name of the secondary help window in which to display one of the
following:

• The selected topic if the lookup yields one or more matching topics.
• The topic specified in pszURL if the lookup fails and a topic is specified in pszURL.
• The Index tab if the lookup fails and fIndexOnFail is True.

fIndexOnFail is True if you want to display the keyword in the Index tab of the HTML Help viewer (tri-pane
window) if the lookup fails

Connecting HTML Help to C++/MFC Programs 15

The HH_FTS_QUERY structure is defined as follows:
typedef struct tagHH_FTS_QUERY

{

 int cbStruct;

 BOOL fUniCodeStrings;

 LPCTSTR pszSearchQuery;

 LONG iProximity;

 BOOL fStemmedSearch;

 BOOL fTitleOnly;

 BOOL fExecute;

 LPCTSTR pszWindow;

} HH_FTS_QUERY;

cbStruct is an Long variable which specifies the size of the structure. You must always fill in this value
before passing the structure.
fUniCodeStrings is a Long variable which is non-zero if all strings are Unicode.
pszSearchQuery is a string containing the search query.
iProximity is a Long variable which specifies word proximity.
fStemmedSearch is a Long variable which is non-zero if you want a stemmed search.
fTitleOnly is a long variable which is non-zero if you want to search titles only.
fExecute is a long variable which is non-zero to initiate the search.
pszWindow is a string which specifies the window in which to display the results.

Connecting HTML Help to C++/MFC Programs 16

HtmlHelp API Examples
In the examples below:

• "m_hWnd" is the window handle for the main form in your program.
• Its assumed that you have set the full path and file name for the help file in m_pszHelpFilePath.
• "TopicID" is the ID for the desired topic.

To display the Contents tab in the navigation pane and open the default topic:
HtmlHelp(m_hWnd, m_pszHelpFilePath, HH_DISPLAY_TOC, ByVal 0&);

To display the Contents tab in the navigation pane and open a specific topic:
HtmlHelp(m_hWnd, m_pszHelpFilePath & \
 "::/RelativeFolder\\TopicFileName.htm", \
 HH_DISPLAY_TOPIC, ByVal 0&);
 -OR-

HtmlHelp(m_hWnd, m_pszHelpFilePath, HH_DISPLAY_TOPIC, \
 ByVal "RelativeFolder\\TopicFileName.htm");

To display the Index tab in the navigation pane:
HtmlHelp(hWnd, m_pszHelpFilePath, HH_DISPLAY_INDEX, "");

To display the Search tab in the navigation pane:
HH_FTS_QUERY searchIt;
searchIt.cbStruct = len(searchIt);
searchIt.fUniCodeStrings = 0&;
searchIt.pszSearchQuery = "";
searchIt.iProximity = 0&;
searchIt.fStemmedSearch = 0&;
searchIt.fTitleOnly = 0&;
searchIt.fExecute = 0&;
searchIt.pszWindow = "";
HtmlHelp(m_hWnd, m_pszHelpFilePath, HH_DISPLAY_SEARCH, searchIt);

To display a specific topic in a standard window:
HtmlHelp(m_hWnd, m_pszHelpFilePath, HH_HELP_CONTEXT, \
 ByVal CLng(TopicID));

To display a specific topic in a popup:
HtmlHelp(m_hWnd, m_pszHelpFilePath, HH_HELP_CONTEXTPOPUP, \
 ByVal CLng(TopicID));

Connecting HTML Help to C++/MFC Programs 17

To display a topic or topics using a K Keyword:
HH_AKLINK keyData;
KeyData.cbStruct = len(keyData);
KeyData.fReserved = 0&;
KeyData.pszKeywords = "cats";
KeyData.pszUrl = "";
KeyData.pszMsgText = "No such keyword found";
KeyData.pszMsgTitle = "Keyword Not Found";
KeyData.pszWindow = "";
KeyData.fIndexOnFail = 0&;
HtmlHelp(m_hWnd, m_pszHelpFilePath, HH_KEYWORD_LOOKUP, keyData);

To display a topic or topics using an A Keyword:
HH_AKLINK keyData;
KeyData.cbStruct = len(keyData);
KeyData.fReserved = 0&;
KeyData.pszKeywords = "cats";
KeyData.pszUrl = "";
KeyData.pszMsgText = "No such associative link found";
KeyData.pszMsgTitle = "Link Not Found";
KeyData.pszWindow = "";
KeyData.fIndexOnFail = 0&;
HtmlHelp(m_hWnd, m_pszHelpFilePath, HH_ALINK_LOOKUP, keyData);

To force all HTML Help windows closed that were opened by this app:
HtmlHelp(0&, "", HH_CLOSE_ALL, ByVal 0&);

Connecting HTML Help to C++/MFC Programs 18

Training Cards from C++
Training cards allow the help system to communicate directly with the program. This section describes the
general procedures for setting up training cards using C++.

Sending Training Card Messages from Help
The help author inserts the HTML Help ActiveX control into training card topics to send information to
programs via the WM_TCARD message. The program must intercept the WM_TCARD message and determine
the required action.
To insert the HTML Help ActiveX control into a topic:
1. Open the HTML topic file in the HTML Help Workshop.
2. Place the cursor where you want the functionality to appear.
3. From the Tags menu, choose HTML Help Control... and follow the instructions to insert the control.
You can use the TCard command of the ActiveX control to send a WM_TCARD message from the HTML Help
file. This command works only from within a compiles HTML Help (.chm) file. the following properties are
relevant to this command:
The Button property sets the button type.
The Command property needs to be set to "TCard."
The Font property sets the font for the control.
The Item1 property sets the wPARAM and the lPARAM parameter values for the WM_TCARD message.
wPARAM usually identifies a user action and must be numeric. lPARAM may contain additional data, depending
on the value of wPARAM, and may be numeric or string. See the WM_TCARD message section below for more
details.
The Text property sets the text to display as the link or button.

The WM_TCARD Message
The program must intercept the WM_TCARD message from the help file and determine the correct action to
take.

The wParam value for the WM_TCARD message is one of the following:
IDABORT The user clicked an authorable Abort button.
IDCANCEL The user clicked an authorable Cancel button.
IDCLOSE The user closed the training card.
IDHELP The user clicked an authorable Help button.
IDIGNORE The user clicked an authorable Ignore button.
IDOK The user clicked an authorable OK button.
IDNO The user clicked an authorable No button.
IDRETRY The user clicked an authorable Retry button.
IDYES The user clicked an authorable Yes button.
HELP_TCARD_DATA The user clicked an authorable button. The lParam parameter contains a long integer
specified by the help author.
HELP_TCARD_NEXT The user clicked an authorable Next button.
HELP_TCARD_OTHER_CALLER Another program has requested training cards.

If wParam is HELP_TCARD_DATA, lParam is the number indicated by the TCARD macro. Otherwise
lParam is 0 (zero).

Connecting HTML Help to C++/MFC Programs 19

Processing TCard Commands in the Program
The basic procedure for setting up TCard processing follows. Please see the Windows SDK documentation for
details on how to use the SetWindowsHookEx and UnhookWindowsHookEx functions, and on the required
hook processing within your hook procedure.

To intercept and process the WM_TCARD message:
1. With the help author, decide on the codes that will be used for any function that is not predefined.
2. From the program, open HtmlHelp using the WinHelp command. Call the HtmlHelp API directly rather than

going through MFC to ensure that MFC does not intercept and process the command somewhere.
HtmlHelp(m_hWnd, m_pszHelpFilePath, HELP_CONTEXT, TopicID);

3. Call the SetWindowsHookEx function with a WH_CALLWNDPROC hook type to set up a hook
procedure to monitor WM_TCARD messages sent from help.

4. When the hook procedure detects the WM_TCARD message, process the message to determine the
necessary actions.

5. Make sure you release the hook procedure using UnhookWindowsHookEx before closing the program.

Resources
All of the following plus links to other reference sites about online user assistance are available through the
Shadow Mountain Tech Web site (www.smountain.com).
On the Help/Connecting page:

• Latest update of this document and other documents about connecting online help to your program
• Programmer's Reference to WinHelp (by Don Lammers and Paul O'Rear)
• Sample code, including API definition modules.
• David Liske's help subclassing tutorial and modules

On the Help/Bugs & FAQ page:
• WinHelp 4.0 Unofficial Bug and Anomaly List (currently maintained by Don Lammers)
• WinHelp FAQ File (by Charlie Munro)

http://www.smountain.com/m_linkWH.htm
http://www.smountain.com/
http://www.smountain.com/
http://www.smountain.com//m_connect.htm
http://www.smountain.com//m_bugfaq.htm

	Scope
	Acknowledgements
	Connecting Context Sensitive HTML Help to C++/MFC Programs
	Create a Program with Built-In Help
	Set the Help File Name
	Make Sure HTML Help Can Find the Help File
	Manually Add the Context Hooks
	Override the Default Context Help Behavior
	Activate Control Level Help for a Dialog Box
	The HELPINFO Structure
	Create a Single Help Calling Function
	Connect Context Help to a Right Click on a Button

	Opening HTML Help Directly from Your C++ Code
	HtmlHelp API Syntax
	HtmlHelp Command Constants
	Help Structures
	HtmlHelp API Examples

	Training Cards from C++
	Sending Training Card Messages from Help
	The WM_TCARD Message
	Processing TCard Commands in the Program

	Resources

